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of Germany and Institute of Theoretical Physics, Hoza 69,OO-681 Warszawa, Polandt 
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Abstract. In this paper a new quasi-classical expansion is defined. It consists of the asymptotic 
expansion of wavefunctions with respect to the Planck constant, which multiplies the time 
derivative in the Schrodinger equation. It is proved that such an approach provides a 
systematic and unequivocal scheme for studies of multiphoton processes in which a large 
number of photons are exchanged with a far-infrared laser field. The domain of validity of 
this approach is also discussed. 

1. Introduction 

The appearance of lasers capable of generating high-power far-infrared coherent radi- 
ation has revealed new aspects of the multiphoton interaction of electromagnetic radi- 
ation with solids. Subsequently, on the basis of these researches, new properties of many 
materials have been investigated, and new radiation detectors have been developed (see 
e.g. Dornhause and Nimtz 1976, Richter 1976, Vedenov et a1 1982, Kaminskii 1981). 
Experimental investigations of multiphoton transitions in crystals have usually been 
made in the case of radiation with wavelengths in visible, near-infrared and middle- 
infrared ranges. For such frequencies the transition amplitude for an n-photon process 
is much higher than the transition amplitude for an (n + 1)-photon process right up to 
light intensities corresponding to the damage threshold of investigated crystals. The 
application of far-infrared lasers has changed this situation to a large extent. This is 
due to the fact that the ‘effective expansion parameter’ for multiphoton transitions is 
proportional to (as will follow shortly), where I and w are the intensity and 
the photon energy of the laser beam in atomic units (the atomic unit of intensity is 
3.51 x 10l6 W cm-2 and the atomic unit of energy is 27.2 eV). To be more specific, one 
can apply perturbation theory provided that the ‘effective expansion parameter’ is much 
smaller than 1 (this is in fact the definition of this parameter); in this case the transition 
amplitude for an n-photon process dominates the transition amplitude for an (n + 1)- 
photon process. In the case of submillimetre radiation of wavelength in the order of 
100 pm (w - 0.5 x atomic units) the ‘effective expansion parameter’ approaches 
unity already for intensities of the order of MW cm-*. For such intensities a new type of 
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non-linear absorption of light has been reported for p-type Ge crystals subjected to high- 
power pulses from an NH3 laser (Ganichev et a1 1983). Also a general approach to 
multiphoton intraband transitions has recently been developed (Ganichev et a1 1986). 

Although multiphoton processes have been studied in solids for many years (see e.g. 
Ridley 1982), the invention of powerful far-infrared lasers has changed this subject to a 
large extent. This is due to the fact that in this case multi does not stand for two or even 
three, but rather 10 or more. A rigorous treatment of these processes would require 
solving numerically the Schrodinger equation describing a many-electron system 
coupled to an intense laser field. It appears, however, that such an approach is still very 
difficult to perform and that the only possibility of attacking this problem would consist 
of the development of a systematic and efficient expansion scheme. The aim of this paper 
is to develop such a scheme for absorption/emission of high-power far-infrared radiation 
which induces multiphoton transitions of free carriers between different conduction 
bands of a crystal. Some preliminary results have already been presented in Kaminski 
(1988a) where I have calculated the leading contribution to the so-called 1/n expansion 
for n-photon processes. However, it is not clear how to calculate systematically the next 
orders of this expansion and how to estimate its domain of validity. This is the subject 
of this paper. The notation used here is taken from my previous paper (Kaminski 1988a). 

Other topics of the interaction of radiation with solids and the scattering of charged 
carriers in crystals are discussed for instance in an interesting monograph of Ridley 
(1982) and in the review article of Chattopadhyay and Queisser (1981). 

2. Quasi-classical expansion 

For simplicity we shall limit our discussion to scattering processes of electrons by 
impurities in the presence of intense far-infrared laser fields. Let me emphasise, 
however, that the non-perturbative scheme developed here can be applied to an arbitrary 
multiphoton process in which a large number of photons are exchanged between the 
laser field and matter; for instance, it can be used in studies of multiphoton ionisation 
of excitons. 

Since we are interested in the interaction of matter with radiation generated by 
lasers, i.e. with a special kind of radiation that is characterised by its very high intensity 
and its coherence properties, the quasi-classical approximation of a laser field is adequate 
(see e.g. Manakov et a1 1986). For a single-mode field this approach consists of treating 
the electromagnetic vector potential not as an operator but as a function that fulfils the 
classical Maxwell equations. For a multimode field, however, such an approximation is 
not further applicable because the quantum character of radiation implies that, in the 
limit of large intensities, the electromagnetic vector potential has to be treated as a 
stochastic process, an ensemble average over which should be performed at the end 
(Bialynicki-Birula and Bialynicka-Birula 1976, Mittleman 1982). This means that it 
suffices to determine different kinds of cross sections for a laser field and afterwards to 
average them over stochastic changes of laser-field parameters. This paper deals with 
the first part of this procedure. The second part is usually much more difficult to perform, 
especially if one wants to account for the interaction of radiation with matter in a 
non-perturbative manner; for a low-frequency radiation field a general procedure was 
presented in Kaminski (1988b). For more information about the quasi-classical approxi- 
mation for the interaction of an intense radiation field with matter, one should read Bial 
ynicki-Birula and Bialynicka-Birula (1976), Mittleman (1982), Manakov e? a1 (1986) or 
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Ehlotzky (1985), whereas scattering processes in the presence of the quantised radiation 
field are discussed for instance in Rosenberg (1982) and Klinskikh and Rapoport (1985). 
Let me also note that both the quasi-classical and the quantum formalisms in the limit 
of large intensities give equivalent results and the notion of ‘multiphoton processes’ can 
be used as well in the quasi-classical formalism. 

The scattering matrix element Sfi for the transition (pi , ni) + (pf7 nf), where ni and 
nf label conduction bands, is equal to (Kaminski 1988a) 

where qg!nf and V!f;)ni are the time-dependent Bloch wavefunction and the outgoing- 
wave scattering wavefunction. These wavefunctions fulfil the following equations: 

where Vc(r)  is a periodic-in-space potential, which describes the crystal lattice, whereas 
Vr(r )  is a short-range potential, which approximates an impurity. The final state of 
electrons is described by (2.2), whereas the initial state, together with the whole Born 
series with respect to V I ,  is described by (2.3). Let me emphasise that the impurity 
potential VI can appear only in one of these equations, and that in the case of scattering 
one can arbitrarily choose one of these possibilities. Note that I have removed the term 
quadratic in A(t) by a phase transformation; although the A 2  term in the Schrodinger 
equation is irrelevant for scattering processes, it has to be accounted for in photo- 
ionisation (see e.g. Kaminski 1988a, 1990a). 

For optical fields of moderate intensities perturbation theory to the lowest non- 
vanishing order is an appropriate approach to the calculation of transition amplitudes. 
However, in the case of intense far-infrared fields the application of the standard 
perturbation theory to lowest non-vanishing order becomes insufficient (even for non- 
resonant processes), because higher-order terms become comparable to the lowest- 
order term and should be included (see e.g. Ganichev er a1 1986), independently of 
uncertainties concerning the convergence of the summation. The alternative is to devise 
a direct , non-perturbative approach for solving the Schrodinger equation in the presence 
of a strong far-infrared laser field. The aim of this section is to propose a new quasi- 
classical expansion, which can effectively describe multiphoton processes with a large 
number of absorbed or emitted photons. In these investigations the frequency of the 
alternating field is supposed to be non-resonant with respect to eigenfrequencies of the 
quantum system. This gives us the possibility to restrict our considerations to the purely 
monochromatic fields without accounting for the non-monochromaticity effects, which 
essentially determine the character of resonances. Owing to this limitation I shall denote 
the time dependence of electromagnetic potential (and also other related quantities) 
interchangeably by A(t) or A(wt), where w is the laser frequency. 
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Guided by the results obtained in Kaminski (1988a) I am seeking solutions of (2.2) 
and (2 .3 )  in the form 

I)$'!nf = I)jo) = exp (2.4) 

and 

where Ei = Eni(Pi), Ef = E,@f), qi 
maEnf(pf)/apf. The function a(t) is determined by the vector potential A ( t ) ,  

Q n i ( P i )  = maEnj(Pi)/aPi, and = qnf(Pf) = 

ma,a(t) = - eA(t). (2.6) 

The vectors ui = qi/m and uf = qf/m are the groupvelocitiesof initial and final wavepack- 
ets, whereas a(t) describes the classical motion of a charged particle in the presence of 
an electromagnetic plane wave. As follows from the Floquet theorem, @?) and are 
periodic functions of time, with period equal to 21r/w. These functions fulfil the following 
equations (note that owing to the time periodicity one can replace the time derivative a, 
by ma,): 

(2.7) 
e 
m ( E ~  - H~ + - ~ ( m t ) ( P  - qf) + inma, 

1 (2 * 8) 
e 
m 

( E ~  - H,, + - ~ ( m t ) ( ~  - q i )  + inma, @!+)(r ,  q )  = o 

where H c  = - fi2A/2m + Vc(r) ,  H o  = H c  + V, ( r ) ,  P = - ihV and q = mt. I shall use 
further the Dirac notation. The substitution of (2.4) and (2.5) into (2.1) leads to the 
scattering matrix, which I write down in the form 

s, = SP 
n= --m 

(2.9) 

where 

In the above equation ( r i f ,  0; q )  = @f (0) ( r ,  QJ), (rli,  +; cp) = @!+)(r ,  q)and Afi = qf - 

q i .  This result is derived by using the Fourier decomposition of periodic functions 
@{+) and and performing the integration over tin (2. l), which leads to the 6 function 
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in (2.10) expressing the condition of the conservation of energy. Note that the space 
integration is present in the scalar product (f, 0; q 1 VI 1 i ,  + ; q), 

We now define a quasi-classical expansion, 
m 

Ii, +; q) = X f i l i i ,  +, 1; q) 

I f , O ; d =  Xfi/If,O,bP) 

/=0 
z 

/=0 

in such a way that 

(2.12) 

(2.13) 

These equations follow from the substitution of (2.12) and (2.13) into (2.8) and (2.7) 
respectively, and from the comparison of terms multiplied by a given power of ho. Let 
me note in passing that this is the asymptotic expansion with respect to the Planck 
constant which multiplies the time derivative in the Schrodinger equation, whereas the 
Planck constant which multiplies the space derivative is accounted for exactly; this is the 
reason why this expansion can be called as a quasi-classical one. From now on units in 
which h = 1 are used. The scattering amplitude 9:’ now adopts the form 

(2.18) 

where 
k 

m 1 ”  
9;; = - - -Z-- jdeexp[inq 2n  /=(J 2n +iAficu(q)](f,O,l;q(VI~i,+,k-l;q). (2.19) 

The aim of this paper is to prove that in the limit of a large number of absorbed or emitted 
photons (i.e. for n + 1) and for given aO (defined by (3.2)) and no = E,  - E, ,  the 
term 9R)k behaves like K k .  Hence, the leading contribution to the scattering amplitude 
%p) is supplied by S)c&, and the first correction to it is given by Ski. Further corrections 
can also be accounted for in the unequivocal manner by the inclusion of 9!\ for k = 
2,3,  etc. This statement is valid for an arbitrary polarisation of light. 
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It is difficult to say how large the number of exchanged photons should be in order 
to apply effectively the quasi-classical expansion developed above. For instance, the 
model calculation shows (Shakeshaft and Robinson 1982) that even the case of n = 2 
seems to give reasonable agreement with the Kroll-Watson formula. This problem, 
however, has to be studied more carefully and I hope that recently developed one- 
dimensional models (Kaminski 1990b, 1990c) will shed more light on the applicability 
of this expansion. 

The physical meaning of the quasi-classical expansion can be understood quali- 
tatively on the basis of the condition of the conservation of energy, nfiw = Er - Ei. 
Indeed, for a given Ef - Ei the limit f i  -+ 0 corresponds to the limit In 1 + m. Let me 
emphasise, however, that this condition does not provide any limitations on attainable 
intensities of laser beams; these limitations follow from an analysis presented in the next 
sections. 

3. Asymptotic behaviour of quasi-classical expansion for large n 

For an elliptically polarised electromagnetic plane wave the vector potential in the dipole 
approximation adopts the form 

A ( q )  = +(a e-'" + U* e'") (3.1) 

where a constant vector a has in general complex coordinates; for linearly polarised light 
a is a real vector, hence A ( q )  = a cos q. Let me now define the following quantities: 

e 
( Y o = - -  U mw 

aoAfi  = laoAfile-i'fi 

= +(aoQi,f ei'ti + a$ e-"fi) (3.4) 

1 
Qsi,f = ,i ( C U ~ Q , , ~  eisfi - a$ e-'%) (3.5) 

where Q i 4 =  P = qi, f .  As follows from (3.2) and (3.3), Afia(q) is equal to 
- 1  aoAf'Isin(q + S f i ) .  Moreover, the quasi-classical expansions (2.14)-(2.17) now 
adopt the form 

[Ei - Ha - wQci cos(q + 6fi)  - oQsi sin(q + a,)] Ii, +, 0; q) = 0 

[ E f  - H c  - w Q q   COS(^ + afi) - wQsf sin(q + Sf i ) ]  I f ,  090; V) = 0 

(3.6) 

(3.7) 

and 

( i ,  +, 1 + 1; q }  = - iw[Ei - Ha - wQci cos(q + 6,) - wQsj sin(q + 6fi)I-l 

x 3 ,  Ii, +, 1; q )  

x 3 ,  I f ,  0 7 1 ;  q). 

(3.8) 

I f ,  0,1+ 1; q }  = - iw[Ef - H c  - w e c f  cos(q + 6fi) - O Q S ~  sin(q + 6fi)I-l 

(3.9) 



Quasi-classical expansion for multiphoton processes 6783 

It is now clear that for a given a. (hence, for given 
quasi-classical expansion can be represented as follows: 

( i ,  + , I ;  g,) = 

and the lth term of the 

X i 

o'+j 2 cosk(q + d j i ) l i ,  ljk, C)  
j = O  k = O  

x i 

+ d + j  cosk-'(g, + S,)sin(g, + dfi ) l i , l jk ,S)  (3.10) 

andsimilarly for 1 f, 0, I; Q,). Important in these representations is that the kets 1 i, ljk, C) ,  
etc., are independent of Q, and depend on the laser parameters only through a. and 6fi ,  
i.e. through and Qsi4, but not on o separately. Having this in mind we arrive at 
the following expression for k?J$i : 

j =  1 k = O  

02 i 

m i 
+ e-"% ok+j Si( IaoAjil)Skjl(pi, ni;pj, nf; ao) 

j =  1 / = 0  
(3.11) 

where the functions Cf,(z) and Sf,(z) are defined in the appendix (equations (Al) and 
(A28)). Explicit forms of C ,  and Skj, are not necessary for our further discussion; 
important, however, is that these functions do not depend on n and w .  

Now we can perform the limit n --f t~ for a given energy transfer (from the laser field 
to matter) and for a given a0 . Taking into account asymptotic expansions of C f, and 
Sf, (equations (A31) and (A32)) we conclude that the leading term of 25;; behaves as 

X 

%;(i)f)k = e-inafin- k ~ n ( I  a 0  Aji I> 2 ( ~ f  - ~ i ) ~ + j ( /  ao~fi  I)-' 
j = O  

x CkjjOi, ni,pf)  n f ,  ( yo )  + O(n+l). (3.12) 

Let me note in passing that although in the above sum we have singular terms for a. = 
0 (i.e. ( 1  aoAfi I)-'), these singularities are cancelled, because functions c ,  are 
proportional to a&. 

Hence, we see that in the above mentioned limit (n+ t ~ ,  n o  and a. fixed), 

(3.13) 

where Fji,k depends only on E j  - Ei and a. . This result proves our previous statement 
that the leading contribution to the scattering amplitude 25;) with a large number of 
absorbed (or emitted) photons from (or to) the laser field is given by the zeroth-order 
term of the quasi-classical expansion (2.18) and that corrections to this approximation 
can be accounted for unequivocally by calculating next orders of the quasi-classical 
expansion (2.18). 

4. Domain of validity of the quasi-classical expansion 

Although we have considered so far the limit of large n for given n o  and ao, the 
conclusion of the previous section also applies to the limit of large n for given nco and 
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tio, where tio = cuo/n. Indeed, in this case equation (3.11) can be written down as follows 
(we consider for simplicity positive values of n): 

x i 
9;; = e-in+l ok(no)j  c f i ( n ~ a i ~ ~ ~ l ) C ~ ~ ~ ( ~ ~ ,  ni;pf, nf; aio) 

j = O  i = o  
z i 

+ e-insfi wk(no>j s f i ( n ~ a i , , ~ ~ l ) S ~ ~ , ( p ~ ,  n i ; p f ,  nf; ai , ) .  (4.1) 
j =  1 i = o  

Proceeding in the similar manner as before and applying the asymptotic expansions 
(A27) and (A30) we arrive at the same conclusion. However, now the domain of validity 
of the quasi-classical expansion is larger. Indeed, the qualitative estimation of it can be 
based on the applicability of the asymptotic expansions of C‘,(z) and Sfi(z) for large n,  
where z = 1 cuoAfi 1 = n I aio A, 1 .  As follows from the analysis performed in the appendix 
these expansions are valid provided that n % 1 and /aoAfil 6 n,  where the symbol G 
means less than or in the vicinity of. Qualitatively, these conditions can be written down 
as 

1 6 Z o  04n2/Aji  n 91 (4 * 2) 
where w and A;; are in the atomic unit of energy, Io = 3.51 x 10l6 W cm-2 and the 
intensity of radiation Z is in W cm-2. For instance, for n - 10, w - 0.5 X au and 
Afi - 5 x au (i.e. for Aji of the order of 1 eV) the intensity Zcan reach 10” W cm-2, 
whereas for Afi of the order of w ,  the intensity can be of the order of 1013 W cm-’ or less, 
hence much larger than the intensity corresponding to the damage threshold of the 
investigated crystal. Let me note, however, that conditions (4.2) are necessary ones; 
sufficient conditions certainly depend on a particular process. For instance, one can 
expect that intermediate resonances can change these estimations significantly. 

The applicability of standard perturbation theory can be characterised by the con- 
dition 1 cuoAfi 1 e 1, under which one can expand the Bessel functions in power series. 
Approximating now Ajiby 0 and knowing that ai is of the order of Z O - ~ ,  where 1 and 
w are in atomic units, one obtains the following estimation: 

1 0 - 3  e I. (4.3) 

This is exactly the condition mentioned in the introduction and also obtained in Ganichev 
et a1 (1986). 

5. Conclusions 

The aim of this paper was to introduce a new quasi-classical expansion and to discuss its 
domain of validity. It appears, in particular, that this approach provides a systematic 
and unequivocal expansion scheme for multiphoton processes, in which the number of 
absorbed or emitted photons is large. The domain of validity of this expansion has also 
been discussed, showing that it can be applied to free-free transitions in solids in the 
presence of an intense far-infrared laser field. 

The quasi-classical approximation defined in this paper can immediately be applied 
to photoionisation processes (see e.g. Kaminski (1988a), in which only the leading term 
has been considered). In this way one can give an analytical justification for the Keldysh- 
type theory (Keldysh 1965) and estimate its domain of validity, i.e. to treat problems 
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that have not been studied before. These problems are considered elsewhere (Kaminski 
1990a). 

Considerably more work is needed before one can obtain (by performing numerical 
calculations) practical results. Let me, however, emphasise that the quasi-classical 
expansion developed in this paper suggests in fact in which direction such a calculation 
should go, i.e. which approximations should be applied and what are their limitations; 
other Keldysh-type approaches do not give such possibilities. 

At the end of this paper let me make a short historical note. It follows from equations 
(2.14) and (2.15) that the leading terms of our quasi-classical expansion are given by the 
wavefunctions defined by equations (29) and (30) in Kaminski (1988a), provided that we 
further apply the low-temperature approximation (equation (26) in Kaminski (1988a)). 
Similar approximations, although in a different context and without rigorous discussions 
of their domains of validity, appeared many years ago in Houston (1940). Applications 
of such an approximation in solids to the so-called Bloch oscillations have recently been 
discussed (Krieger and Iafrate 1986), where also a brief historical account of some 
controversies is given; for further applications see e.g. Chalbaud and Gallinar (1989). 
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Appendix 

The aim of this appendix is to find the asymptotic expansion for large n of the function 
C 1, ( 2 )  defined by the integral 

1 "  
Ck(z) = -1 d q  cos'(q) exp(inq - izsin q) 

2n -n 

where n and 1 are integers and z is a real number. It follows from the definition (Al) that 

c",4 = -J,(z) (A21 

n 
= -.I,(,?) 

2 

n2 1 
z2  2 

C',(2) = --J (2) - -J:,(z> (A4) 
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where J ,  and JI, are the Bessel functions of order n and its derivative. These examples 
suggest that Cf,(z) can be looked for in the form 

Cf,(z) = Af, (z )J , ( z )  + Bf,(z)JI,(z) (A51 

where the asymptotic behaviour of unknown functions Af,(z) and B f , ( z )  is to be deter- 
mined. To this end let me note that the functions Cf,(z) satisfy the following recurrence 
relation: 

n I d  
Z z dz 

C1:'(Z) = - Cf,(Z) - -- Cf,-'(z). 

Taking into account the well known properties of the Bessel functions of integer order, 

one can immediately show that A f, ( z )  and Bf ,  ( z )  fulfil the system of coupled recurrence 
relations, which can be written down as 

l(1 - 1) 12 
af,-'(z) - 2 cuI,'-'(z) 1 

.f,+'(z) = af,(z) - -(I - $) Pf,-l(z)  + 7 
Z 

(All)  
12 l2 1.2 

P f : ' ( Z )  = P',(z) --pi;' (2) + -$f,-'(z) - , Z p y ( z )  

where a f ( z )  and Pf,(z) are defined by Af,(z) and B f , ( z )  by means of the equalities 

(A12) 

Introducing a new variable x = z/n and defining a f , ( x )  and bf , (x )  as 

a f , ( x )  = af,(z) (A141 

bf,(x) = P L ( 4  (A151 

and 

one arrives at the following system of coupled recurrence relations for a f ,  and bf , :  

l(1 - 1) Ex 
a F ' ( x )  = af,(x) - bf; ' (x)  + T a f , - ' ( x )  - ;liaI,"-'(x) nx n 

where the prime now means the derivative with respect to x .  As follows from these 
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relations, for given 1 and x and for large n the functions a',(z) and b',(z) can be sought in 
the form of power series with respect to l/n, 

a',(x) = U $ ) ( X )  + alt')(x) + aL?'(x) + . . . (A181 
b',(x) = b$(x)  + b$(x)  + b$(x )  + . . * (A19) 

a(n9)r+1(x> = a W )  (A20) 
bi?,+l(x) = b$)(x) .  (A211 

a $ ) ( x )  = 1 (A221 

b $) (x) = 0. (A23) 

bi!),+l(x) = b$)(x)  - lx/n. (A241 

b $ ) ( x )  = BL1)(x) - l(1- 1)x/2n (A251 

b$) (x )  = - 1(f - 1)x/2n. 

where a$)(x)  and b$(x)  are proportional to n-k. In the leading approximation we have 

These equations can easily be solved if we take into account that, according to (A2), 
a ~ ~ ( x )  = 1 and blpd(x) = 0. Hence, 

and 

In the next approximation we have 

A general solution of this recurrence relation is of the form 

where BL1)(x) is an 1-independent function. However, since b#(x )  is equal to zero for 
1 = 0 (see equation (A2)), therefore, B&')(x) = 0 and 

In a similar manner one can find that ai i ) (x)  = 0. 

cf,(nx) for large n: 

valid for given 1 and x .  The domain of validity of this expansion is limited to such values 
of x that are of the order of 1 or less, hence for z 6 n, where the symbol 6 means less 
than or in the vicinity of. For x of the order of 1 the validity of the above asymptotic 
expansion is 'accelerated' by the Watson asymptotic expansion of the Bessel functions 
(see e.g. Erdelyi 1953); indeed, J,(nx) has a maximum for x - 1, hence J;(nx) 
approaches zero and the corrections to the leading approximation of (A27) are pro- 
portional to l/n2. 

Knowing the asymptotic expansion of the integral (Al), one can easily arrive at a 
similar expansion for the following integral: 

(A26) 

To recapitulate we have found the following asymptotic expansion of the function 

Ct,(nx) = [I + ~ ( n - * ) ] x - ~ ~ , ( n x )  + [- l(1- 1)/2n + ~ ~ ( n - ~ ) ] x - ' + ~ ~ ; ( n x )  (A271 

1 "  
S',(z) = ~1 dg, cos'-'(g,) sin g, exp(ing, - iz sin g,). 

-n 

Indeed, to this end it is sufficient to note that 
d 

S?'(z)  = i-Ct,(z). d z  (A29) 

Hence, for given 1 and x ,  and for large n, 

where d' , (x )  is of the order of l/n, whereas & ( x )  is of the order of 1. 
S',(nx) = ii',(x)x-'J,(nx) + b ' , ( x ) x - ' + l ~ '  (nx) (A30) 
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Proceeding in a similar manner as before, one can prove that for given z and 1 and in 
the limit of large n ,  

Cl,(z)  = ( ? ) I  J, (z )  + [O(n-2)JA(z) + O(n-2)J , ( z ) ]  
2 

and similarly for SL ( z ) ,  
1 

S ; ( z )  = (I) [O(n- ' )J , ( z )  + O(n-')JA(z)] .  (A321 
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